Some Results on Total Mean Cordial Labeling of Graphs

نویسنده

  • Sathish Narayanan
چکیده

A graph G = (V,E) with p vertices and q edges is said to be a Total Mean Cordial graph if there exists a function f : V (G) → {0, 1, 2} such that for each edge xy assign the label ⌈ f(x)+f(y) 2 ⌉ where x, y ∈ V (G), and the total number of 0, 1 and 2 are balanced. That is |evf (i)− evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In this paper, we investigate the total mean cordial labeling behavior of Ln⊙K1, S(Pn⊙2K1), S(Wn) and some more graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further results on total mean cordial labeling of graphs

A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...

متن کامل

$4$-Total prime cordial labeling of some cycle related graphs

Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...

متن کامل

$k$-Total difference cordial graphs

Let $G$ be a graph. Let $f:V(G)to{0,1,2, ldots, k-1}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $left|f(u)-f(v)right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $left|t_{df}(i)-t_{df}(j)right|leq 1$, $i,j in {0,1,2, ldots, k-1}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with $x$.A graph with admits a...

متن کامل

Totally magic cordial labeling of some graphs

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

متن کامل

Some New Families of Total Vertex Product Cordial Labeling Of Graphs

I.Cahit introduced cordial graphs as a weaker version of graceful and harmonious graphs. The total product cordial labeling is a variant of cordial labeling. In this paper we introduce a vertex analogue product cordial labeling as a variant of total product cordial labeling and name it as total vertex product cordial labeling. Finally, we investigate total vertex product cordial labeling for ma...

متن کامل

3-difference cordial labeling of some cycle related graphs

Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015